Functional equations involving means

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Solutions for Equations Involving Iterated Functional Series

This section collects the standard terminology and results used in the sequel (see [5]). Let I = [a,b] be an interval of real numbers. C1(I ,I), the set of all continuously differentiable functions from I into I , is a closed subset of the Banach Space C1(I ,R) of all continuously differentiable functions from I into R with the norm ‖ · ‖c1 defined by ‖φ‖c1 = ‖φ‖c0 +‖φ′‖c0 , φ∈ C1(I ,R) where ‖...

متن کامل

Differentiable Solutions of Equations Involving Iterated Functional Series

Let f be a self-mapping on a topological space X and f denote the mth iterate of f , that is, f f ◦ fm−1, f0 id, m 1, 2, . . . . Let C X,X be the set of all continuous self-mappings on X. Equations having iteration as their main operation, that is, including iterates of the unknown mapping, are called iterative equations. It is one of the most interesting classes of functional equations 1–4 , b...

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

Random fractional functional differential equations

In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.

متن کامل

Elliptic Equations Involving Measures

3 Semilinear equations with absorption 19 3.1 The Marcinkiewicz spaces approach . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Admissible measures and the ∆2-condition . . . . . . . . . . . . . . . . . . . 26 3.3 The duality method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Bessel capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Sharp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Hungarica

سال: 2007

ISSN: 0236-5294,1588-2632

DOI: 10.1007/s10474-007-5296-2